The Genesis of Cerebellar GABAergic Neurons: Fate Potential and Specification Mechanisms
نویسندگان
چکیده
ALL CEREBELLAR NEURONS DERIVE FROM PROGENITORS THAT PROLIFERATE IN TWO GERMINAL NEUROEPITHELIA: the ventricular zone (VZ) generates GABAergic neurons, whereas the rhombic lip is the origin of glutamatergic types. Among VZ-derivatives, GABAergic projection neurons, and interneurons are generated according to distinct strategies. Projection neurons (Purkinje cells and nucleo-olivary neurons) are produced at the onset of cerebellar neurogenesis by discrete progenitor pools located in distinct VZ microdomains. These cells are specified within the VZ and acquire mature phenotypes according to cell-autonomous developmental programs. On the other hand, the different categories of inhibitory interneurons derive from a single population of Pax-2-positive precursors that delaminate into the prospective white matter (PWM), where they continue to divide up to postnatal development. Heterotopic/heterochronic transplantation experiments indicate that interneuron progenitors maintain full developmental potentialities up to the end of cerebellar development and acquire mature phenotypes under the influence of environmental cues present in the PWM. Furthermore, the final fate choice occurs in postmitotic cells, rather than dividing progenitors. Extracerebellar cells grafted to the prospective cerebellar white matter are not responsive to local neurogenic cues and fail to adopt clear cerebellar identities. Conversely, cerebellar cells grafted to extracerebellar regions retain typical phenotypes of cerebellar GABAergic interneurons, but acquire type-specific traits under the influence of local cues. These findings indicate that interneuron progenitors are multipotent and sensitive to spatio-temporally patterned environmental signals that regulate the genesis of different categories of interneurons, in precise quantities and at defined times and places.
منابع مشابه
Ptf1a determines GABAergic over glutamatergic neuronal cell fate in the spinal cord dorsal horn.
Mutations in the human and mouse PTF1A/Ptf1a genes result in permanent diabetes mellitus and cerebellar agenesis. We show that Ptf1a is present in precursors to GABAergic neurons in spinal cord dorsal horn as well as the cerebellum. A null mutation in Ptf1a reveals its requirement for the dorsal horn GABAergic neurons. Specifically, Ptf1a is required for the generation of early-born (dI4, E10.5...
متن کاملPtf1a is a molecular determinant for both glutamatergic and GABAergic neurons in the hindbrain.
Editor's Note: These short reviews of a recent paper in the Journal, written exclusively by graduate students or postdoctoral fellows, are intended to mimic the journal clubs that exist in your own departments or institutions. For more information on the format and purpose of the Journal Club, please see Review of Yamada et al. The pancreas transcription factor 1a (Ptf1a) gene encodes a bHLH (b...
متن کاملP102: The Association of the Anti-GAD Antibodies to the Neurological Conditions
Glutamic acid decarboxylase (GAD) is an enzyme which converts the glutamic acid to the neurotransmitter gamma-amino butyric acid (GABA). GABA is an inhibitory neurotransmitter that inhibits or weakens the neuronal stimulations. Presynaptic GABAergic neurons in the central neurons system (CNS) and the cells in the islets of Langerhans in the pancreas generate GAD. There are two isoforms of GAD n...
متن کاملCerebellum: links between development, developmental disorders and motor learning
The study of the links and interactions between development and motor learning has noticeable implications for the understanding and management of neurodevelopmental disorders. This is particularly relevant for the cerebellum which is critical for sensorimotor learning. The olivocerebellar pathway is a key pathway contributing to learning of motor skills. Its developmental maturation and remode...
متن کاملThe Wnt receptor Ryk controls specification of GABAergic neurons versus oligodendrocytes during telencephalon development.
GABAergic neurons and oligodendrocytes originate from progenitors within the ventral telencephalon. However, the molecular mechanisms that control neuron-glial cell-fate segregation, especially how extrinsic factors regulate cell-fate changes, are poorly understood. We have discovered that the Wnt receptor Ryk promotes GABAergic neuron production while repressing oligodendrocyte formation in th...
متن کامل